###
DOI:
电力大数据:2023,26(08):-
←前一篇   |   后一篇→
本文二维码信息
一种配电网故障区间定位改进算法的研究
刘锐, 江涌, 黄庆华, 彭余, 宋阳, 李骁睿, 曹庆, 周武, 王顺尧, 宋国伟
(国网四川省电力公司乐山供电公司)
Research on an improved fault location algorithm for distribution network
liurui, Jiang Yong, huang qinghua, peng yu, song yang, li xiaorui, cao qing, zhou wu, wang shunyao, song guowei
(State Grid Sichuan Electric Power Company Leshan Power Supply Company)
摘要
图/表
参考文献
相似文献
本文已被:浏览 135次   下载 1014
投稿时间:2023-09-22    修订日期:2023-10-18
中文摘要: 当前配电网故障定位的研究主要关注遗传算法等智能算法。本文着眼于常规遗传算法在局部收敛、寻优速度等方面存在的缺陷问题,提出了一种改进方法。该方法以遗传算法全局寻优能力为基础,通过引入自适应调整系数对参数进行优化编码,对种群多样性水平进行综合考量,在保持高收敛性和寻优能力的基础上,增强了全局寻优能力,有效规避了局部最优解,同时在变异操作过程中进行个体优选,提高了算法的寻优速度,减少了迭代次数,显著提升了寻优效率。通过最后通过对一个20节点的配电网络进行了故障定位实验仿真,证明了该方法该算法在信息完整与信息畸变的情形下都能完成准确的故障定位,并且寻优效果显著优于传统算法,具备很好的有效性与优越性。
Abstract:At present, the research of distribution network fault location mainly focuses on intelligent algorithms such as genetic algorithm. This paper focuses on the defects of conventional genetic algorithm in local convergence and optimization speed, and proposes an improved method. Based on the global optimization ability of genetic algorithm, the method introduces adaptive adjustment coefficient to optimize the parameters and comprehensively consider the population diversity level. On the basis of maintaining high convergence and optimization ability, the method enhances the global optimization ability and effectively avoids the local optimal solution. At the same time, the optimization speed of the algorithm is improved by selecting individuals during the mutation operation. The number of iterations is reduced, and the optimization efficiency is significantly improved. Finally, through the simulation of a 20-node distribution network fault location experiment, it is proved that the algorithm can complete accurate fault location under the condition of information integrity and information distortion, and the optimization effect is significantly better than the traditional algorithm, with good effectiveness and advantages.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: