###
DOI:
电力大数据:2023,26(08):-
←前一篇   |   后一篇→
本文二维码信息
基于声发射参数分析的滑动轴承故障诊断方法研究
刘新香1, 顾煜炯1, 赵春晖1, 郭晋东1, 程梅梅2
(1.华北电力大学 能源动力与机械工程学院;2.华北电力大学能源动力与机械工程学院)
Research on Fault Diagnosis Method for Sliding Bearings Based on Acoustic Emission Parameter Analysis
摘要
图/表
参考文献
相似文献
本文已被:浏览 122次   下载 952
投稿时间:2023-08-08    修订日期:2023-09-28
中文摘要: 本文基于声发射产生机理,对基于声发射参数分析法进行滑动轴承故障诊断方法进行理论和实验研究。首先,通过汽轮机发电机组模拟转子实验台模拟了滑动轴承三种润滑状态,通过实验台以及设计的实验方案,利用声发射采集设备对不同润滑状态的声发射信号进行采集。其次,针对采集到的不同润滑状态声发射信号,对其能量均值以及功率谱熵均值进行计算,提出了基于声发射能量均值和功率谱熵均值的散度指标的滑动轴承润滑状态诊断方法,并利用这种方法对模拟信号进行诊断,同时将其与单一能量参数分析法进行对比,发现能量参数分析法不能很好的反映出滑动轴承的三种润滑状态,而文中所提的采用多参数结合的指标诊断方法具有更好的信号适应性以及更高的区分度。
中文关键词: 滑动轴承  润滑状态  声发射  散度  功率谱熵
Abstract:This article is based on the mechanism of acoustic emission generation and conducts theoretical and experimental research on the fault diagnosis method of sliding bearings based on acoustic emission parameter analysis. Firstly, three lubrication states of sliding bearings were simulated using a steam turbine generator unit simulation rotor experimental platform. Through the experimental platform and the designed experimental plan, acoustic emission signals of different lubrication states were collected using acoustic emission acquisition equipment. Secondly, for the collected acoustic emission signals of different lubrication states, the energy mean and power spectral entropy mean were calculated. A divergence index based on the energy mean and power spectral entropy mean of acoustic emission was proposed for the diagnosis of sliding bearing lubrication states. This method was used to diagnose the simulated signals and compared with the single energy parameter analysis method, It was found that the energy parameter analysis method cannot effectively reflect the three lubrication states of sliding bearings, while the index diagnosis method proposed in the article using a combination of multiple parameters has better signal adaptability and higher discrimination.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: