本文已被:浏览 191次 下载 153次
投稿时间:2023-07-31 修订日期:2024-02-06
投稿时间:2023-07-31 修订日期:2024-02-06
中文摘要: 随着“双碳”目标的提出,燃气轮机发电机组的经济、可靠运行成为了行业关注的重点。因此,准确检测故障和提高运行水平具有重要的研究价值。本文针对燃机电厂的故障检测问题,结合小波去噪等数据预处理方法,提出了一种基于非线性状态估计(NSET)的故障检测方法。该方法利用电力大数据,通过构建记忆矩阵、建立数学模型,随后观测实际曲线与预测曲线、分析残差值,能够有效地检测出故障。为了验证其有效性,本文以浙江某燃机电厂为例,在仿真平台、生产现场分别进行实验。实验结果表明,该方法能够实现对仿真33种故障的全部有效检测;对生产现场包括燃机速比阀故障、热电偶故障等常见故障也能准确检测。最后,本文将该方法落地到数字电厂项目中,实现了数字电厂故障检测技术的工程示范应用。
Abstract:Nowadays, with the goals of "Carbon Peaking and Carbon Neutrality," the economic and reliable operation of gas turbine generator sets has gradually become a focal point in the industry. Therefore, it is of great value to quickly and accurately detect faults and improve operational levels. In this paper, we address the issue of fault detection in gas turbine power plants. By combining wavelet denoising with a fault detection method based on Nonlinear State Estimation Technology (NSET), we propose an approach that involves constructing a memory matrix, establishing a mathematical model, comparing actual and predicted curves, and analyzing residual values to achieve effective fault detection, with the big data in electric power. Taking a gas turbine power plant in Zhejiang Province as an example, we verify the method using a simulation platform, which successfully detect all 33 types of faults on the simulation platform. Moreover, the method has been effectively applied using real industrial data, demonstrating its ability to detect faults such as those in the gas turbine speed ratio valve and thermocouples. Finally, the method has been implemented in the E-powerplant project, serving as an engineering demonstration.
keywords: Nonlinear State Estimate Technology big data gas turbine power plant fault detection E-powerplant
文章编号: 中图分类号: 文献标志码:
基金项目:中国华电集团有限公司总部技改项目(JG0120190686)
作者 | 单位 | |
李娴静* | 中国华电集团有限公司浙江公司 | 564961110@qq.com |
李勇辉 | 中国华电集团浙江公司 | |
楼鹏炯 | 杭州华电半山发电有限公司 |
引用文本: