本文已被:浏览 464次 下载 1123次
投稿时间:2023-05-31 修订日期:2023-05-31
投稿时间:2023-05-31 修订日期:2023-05-31
中文摘要: 为解决以往变电站中基于各类传感器的刀闸状态检测方式成本高、稳定性差的问题,本文探索了两类基于图像识别的刀闸状态检测算法,相较于传统的基于图像相似度的刀闸状态识别算法,基于深度学习的目标检测算法对刀闸状态识别准确率更高,能够有效对变电站内刀闸状态进行检测。本文在对483张包含各类刀闸状态的图像进行标注后,使用Yolov5的预训练模型进行训练,训练后的模型在包含80张各类刀闸状态的测试集上进行测试,结果表明综合准确率为89.31%,综合召回率为98.32%。本文所提出的基于深度学习的刀闸识别算法能够对变电站刀闸状态进行有效识别,且识别准确率高、部署较为简单,对保障变电站安全稳定运行有着重要作用。
中文关键词: 刀闸状态,图像相似度,深度学习,哈希相似度,目标检测
Abstract:In order to solve the problems of high cost and poor stability of isolating switch state detection methods based on various sensors in substations in the past, this article explores two types of isolating switch state detection algorithms based on image recognition. Compared to traditional isolating switch state recognition algorithms based on image similarity, deep learning based object detection algorithms have higher accuracy in identifying isolating switch states and can effectively detect isolating switch states in substations. After annotating 483 images containing various isolating switch states, this article used Yolov5"s pre trained model for training. The trained model was tested on a test set containing 80 different isolating switch states, and the results showed a comprehensive accuracy rate of 89.31% and a comprehensive recall rate of 98.32%. The deep learning based isolating switch recognition algorithm proposed in this article can effectively identify the status of substation isolating switches, with high recognition accuracy and simple deployment, playing an important role in ensuring the safe and stable operation of substations.
keywords: isolating switch state, image similarity, deep learning, hash similarity, object detection
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
迟钰坤* | 山东鲁软数字科技有限公司 | 809304992@qq.com |
焦之明 | 山东鲁软数字科技有限公司 | |
纪洪伟 | 山东鲁软数字科技有限公司 | |
王倩倩 | 山东鲁软数字科技有限公司 | |
葛海峰 | 山东鲁软数字科技有限公司 | |
迟峰 | 国网山东省电力公司青岛市黄岛区供电公司 |
引用文本: