###
DOI:
电力大数据:2023,26(5):-
←前一篇   |   后一篇→
本文二维码信息
基于改进YOLOv5s网络的杆塔相关目标检测方法
朱辉, 李海涛, 刘岳鑫, 赵玮, 钱骁, 刘禹涵, 高明阳
(国网江苏省电力有限公司常州供电分公司)
Tower related object detection method based on improved YOLOv5s network
ZHU Hui, LI Haitao, LIU Yuexin, ZHAO Wei, QIAN Xiao, LIU Yuhan, GAO Mingyang
(Changzhou Power Supply Company,State Grid Jiangsu Electric Power Co.,Ltd.)
摘要
图/表
参考文献
相似文献
本文已被:浏览 269次   下载 1111
投稿时间:2023-05-26    修订日期:2023-07-02
中文摘要: 输电杆塔是输电线路的重要组成部分,采用人工或无人机等手段对杆塔相关目标进行周期性巡检至关重要。为解决目前待检测杆塔类型不同、距离远尺寸小、图像畸变等问题,本文提出一种基于深度学习框架的杆塔相关目标检测方法。该方法在YOLOv5s网络的基础上使用FReLU激活函数代替SiLU激活函数,进而改善了对杆塔相关目标的图像识别准确率;为解决杆塔图像中目标距离远、尺寸小的问题,采用了对小目标、低分辨率友好的SPD-Conv模块;同时使用对目标特征分批次处理的SPPCSPC空间金字塔池化,进一步提升了杆塔目标的检测精度。实验结果表明,改进后的YOLOv5s-FSS网络相比原YOLOv5s网络,其平均精度(mAP)提升2.4%,查准率(Precision)提升0.3%,查全率(Recall)提升1%,目标检测性能提升效果显著,能够有效提升输电杆塔巡检效率。
Abstract:Transmission tower is an important part of the transmission lines. It is very important to use manual or unmanned aerial vehicle to carry out periodic inspection on the target related to the tower. In order to solve the problems of different tower types, small distance size and image distortion, a tower dependent object detection method based on deep learning framework is proposed. Based on YOLOv5s network, this method uses FReLU activation function instead of SiLU activation function to improve the accuracy of image recognition for tower related objects. SPD-Conv module which is friendly to small target and low resolution is adopted to detect the long distance or small size of target in tower image. At the same time, SPPCSPC space pyramid pool is used to process the target features in batches, which further improves the detection accuracy of tower target. The experimental results show that compared with the original YOLOv5s network, the mAP, Precision and Recall of the improved Yolov5s-FSS network are increased by 2.4%, 0.3% and 1% respectively. The detection performance is significantly improved, which can effectively improve the efficiency of transmission tower inspection.
文章编号:     中图分类号:    文献标志码:
基金项目:常州供电公司科技项目(SGJSZOOKJJS2201010)
引用文本: