本文已被:浏览 189次 下载 1054次
投稿时间:2023-05-19 修订日期:2023-07-09
投稿时间:2023-05-19 修订日期:2023-07-09
中文摘要: 电力系统中的暂态功角稳定和暂态电压稳定对于系统安全运行至关重要,而可再生能源接入比例不断提高和核心设备的电力电子化使得传统的暂态稳定评估方法难以适用。因此,本文提出一种基于Transformer的多任务暂态稳定评估模型。该模型利用Transformer的自注意力机制打破传统循环神经网络的串行计算结构,并行计算暂态过程中各个时间点间的相互关系,快速高效的提取时序特征,并且采用门控多任务学习方法同时评估暂态电压和暂态功角稳定问题,提升模型计算精度和计算效率。本文在IEEE10机39节点系统以及含新能源系统中进行仿真和测试验证了本文提出方法的有效性。
中文关键词: 暂态稳定评估 Transformer 自注意力 多任务学习
Abstract:The transient power angle stability and transient voltage stability in the power system are crucial for the safe operation of the system, while the increasing proportion of renewable energy access and the electrification of core equipment make traditional transient stability assessment methods difficult to apply. Therefore, this article proposes a multi task transient stability assessment model based on Transformer. This model utilizes Transformer"s self attention mechanism to break the serial computing structure of traditional recurrent neural networks, parallelly calculate the interrelationships between various time points in the transient process, quickly and efficiently extract temporal features, and uses gated multitasking learning methods to simultaneously evaluate transient voltage and transient power angle stability issues, improving model calculation accuracy and efficiency. This article verifies the effectiveness of the proposed method through simulation and testing in IEEE 10 machine 39 node systems and systems containing new energy.
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
彭嘉杰* | 国网江苏省电力公司常州供电分公司 | 921939688@qq.com |
王滨 | 国网江苏省电力公司常州供电分公司 | |
王佶江 | 国网江苏省电力公司常州供电分公司 | |
戴中坚 | 国网江苏省电力公司常州供电分公司 | |
金俊杰 | 国网江苏省电力公司常州供电分公司 |
引用文本: