###
DOI:
电力大数据:2023,26(5):-
←前一篇   |   后一篇→
本文二维码信息
Box-plot-SA-BP:变压器DGA多参量故障诊断模型
周威振1, 王兴1, 谢益帆2, 刘皞天2, 刘绍强1
(1.南方电网超高压输电公司大理局;2.南方电网超高压输电公司大理局 云南大理)
Box-plot-SA-BP: Fault Diagnostic Model for Multi-feature Transformer DGA
zhouweizhen1, wangxing1, xieyifan1, liuhaotian1, liushaoqiang2
(1.China Southern Power Grid Company Limited;2.China Southern Power Grid Company Limited,?Yunnan, Dali 671000,China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 261次   下载 1048
投稿时间:2023-05-02    修订日期:2023-07-09
中文摘要: 油中溶解气体分析(DGA)方法是一种典型的充油电力设备故障诊断方法,广泛应用于电力变压器故障检测与状态评估,但由于样本数据的可靠性和诊断模型的有效性影响,导致DGA诊断方法准确率较低。文中提出了一种Box-plot-SA-BP模型,首先,采用Box-plot数据检测法去除异常数据以解决数据质量的问题,然后,利用自注意力机制(Self-attention, SA)准确捕捉多参量样本数据间的联系,提取更加稳定可靠的特征,最后设计BP网络多分类模型实现变压器故障诊断。对比实验证明了Box-plot-SA-BP模型的良好性能,具有较高的应用价值。
Abstract:Dissolved gas analysis (DGA) is a typical fault diagnosis method for oil filled power equipment, which is widely used for power transformer fault detection and state evaluation. However, due to the reliability of sample data and the effectiveness of diagnosis model, the accuracy of DGA diagnosis method is low. In this paper, a Box-plot-SA-BP model is proposed. First, the Box-plot data detection method is used to remove abnormal data to solve the problem of data quality. Then, the Self-attention mechanism (SA) is used to accurately capture the relationship between multi-parameter samples and extract more stable and reliable features. Finally, a BP network-based multi-classification model is designed to achieve transformer fault diagnosis result. The comparative experimental results prove that the Box-plot-SA-BP model has good performance and high application value.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: