本文已被:浏览 204次 下载 956次
投稿时间:2023-04-18 修订日期:2023-10-19
投稿时间:2023-04-18 修订日期:2023-10-19
中文摘要: 风电在我国能源结构转型中具有重要地位,但其波动性也带来严峻挑战。数值模式预报的风速数据是风电出力预测和高效消纳的重要基础,需要评估不同模式的预报效果。本文通过对比分析4种主流数值模式的风速预报效果,全面评估它们在我国冬季不同区域和不同条件下的预报精度,以期为我国冬季大风期风速预报提供参考。基于不同分辨率、不同初始场、不同同化方案的4种数值预报模式,结合我国131个站点观测资料,对预报风速的误差分布特征与预报能力进行了研究与分析;同时聚焦典型站点,分析了不同风速段、不同区域的预报误差特征及预报能力。研究结果表明:集合预报模式的预报结果在复杂地形条件下更科学;高分率单一模式对简单下垫面的风速波动性预报较好;白天预报效果好于夜间;对平原风速预报效果最好。
Abstract:Wind power holds a significant role in the transformation of China''s energy structure, yet its volatility also poses severe challenges. The wind speed data, forecasted by numerical models, serves as a crucial foundation for predicting wind power output and its efficient consumption. Therefore, it''s necessary to evaluate the forecasting effects of different models. In this study, we compare and analyze the wind speed prediction effects of four mainstream numerical models. We aim to thoroughly assess their prediction accuracy in different regions and under varying conditions during winter in China. This is done with the goal of providing a reference for wind speed prediction during China''s winter gale period. Relying on four numerical prediction models with different resolutions, initial fields, and assimilation schemes, and in conjunction with observation data from 131 stations across China, we investigate and analyze the characteristics of error distribution and the forecasting capability of the predicted wind speeds. Simultaneously, we focus on typical stations to analyze the characteristics of forecasting errors and the forecasting capability across different wind speed bands and regions. The results indicate that the forecast results of the ensemble forecast model are more scientifically sound under complex terrain conditions. The high-fraction single model excels at forecasting the volatility of wind speed in simple subsurface conditions. The forecast effect is superior during daytime compared to nighttime, and the forecast effect is optimal in plains wind speed.
keywords: numerical model error characteristics evaluation algorithms wind speed prediction ensemble prediction high resolution
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
刘华 | 申能股份有限公司 | liuhua@shenergy.com.cn |
马辉 | 北京金风慧能技术有限公司 | |
沈晔 | 申能股份有限公司 | |
郝春宇 | 申能股份有限公司 | |
俞竣珲 | 申能股份有限公司 | |
靳双龙* | 中国电力科学研究院有限公司 | ceprijinsl@163.com |
引用文本: