本文已被:浏览 343次 下载 1100次
投稿时间:2023-03-21 修订日期:2023-06-25
投稿时间:2023-03-21 修订日期:2023-06-25
中文摘要: 输电线路严重覆冰可能会导致输电线路的机械和电气性能急剧下降,威胁电力系统安全、稳定运行。线路覆冰预测技术是电网防冰、抗冰领域难点之一。本文以电网输电线路自然覆冰监测大数据为基础,进行数据异常处理、缺失值填补等预处理,提出一种基于覆冰拉力浮动区间的区间准确率评测方法。研究基于新型深度学习的数据驱动输电线路覆冰预测技术,构建了融合历史监测拉力、微气象数据及未来天气预报的拉力时序、一阶差分拉力时序覆冰预测模型,实现覆冰监测终端未来24小时逐小时的拉力准确预测,提前预知输电线路是否覆冰以及覆冰程度,有助于防冰、融冰决策,保证电力系统稳定安全运行。
Abstract:Serious icing coating of transmission lines may cause the decline of the mechanical and electrical performance of transmission lines, threatening the safe and stable running of power systems. Line icing prediction technology is one of the difficulties in the field of anti-icing power grid. In this paper, we take advantage of the massive monitoring data of natural icing coating of power transmission lines, and conduct data manipulation such as outlier processing, missing value imputation. To evaluate prediction accuracy, we propose an interval accuracy evaluation method based on icing tension floating interval. This paper conducts the data-driven icing prediction technology of transmission lines based on new deep learning, and blends historical monitoring pull, micrometeorological data and future weather forecast, and builds the pull time series and first-order difference pull time series icing prediction models. These models achieve the accurate pull prediction of the icing monitoring terminal in the next 24 hours, and can predict whether or not the icing coating and the icing coating degree. It is helpful for the decision of anti-icing and melting ice operation, and ensure the stable and safe operation of power system.
文章编号: 中图分类号: 文献标志码:
基金项目:中国南方电网有限责任公司科技项目(编号:066600KK52190063 )
作者 | 单位 | |
吴建蓉* | 吴建蓉 | wjr19860325@126.com |
Author Name | Affiliation | |
Wu Jianrong | Electrical Science Institute of Guizhou Power Grid Co.,Ltd, CSG | wjr19860325@126.com |
引用文本: