本文已被:浏览 236次 下载 950次
投稿时间:2023-03-03 修订日期:2023-06-21
投稿时间:2023-03-03 修订日期:2023-06-21
中文摘要: 为适应摄像头在智慧城市、智能交通、自动驾驶等新兴领域应用部署愈加广泛的需求,视频分析需更高精度、低延时地响应分析结果。然而,这种高精度的分析同时也带来了巨大的计算资源需求,计算资源受限的摄像头无法胜任分析任务。边缘计算不仅可以解决本地摄像头计算资源问题,还可以显著降低向云端传输视频流数据的时间;因此,本文探讨了利用深度强化学习方法,在边缘节点辅助摄像头集群视频分析任务场景下,根据当前网络系统条件动态决策,卸载部分指定摄像头上的分析任务,以在满足任务响应延时的约束前提下,最大化一段时间内任务分析的精度。仿真实验结果表明,本文提出的方法在任务的响应延时和准确度方面获得了良好效果。
Abstract:In order to adapt to the increasingly widespread application of cameras in emerging fields such as smart city, intelligent transportation, and autonomous driving, video analytics have to respond with high accuracy and low latency. However, the high-precision analysis also brings a huge demand for computing resources, and cameras with limited resources cannot support the tasks. Edge computing can not only solve the problem of limited resources of local cameras, but also significantly reduce the transmission latency; hence, this scenario is considered in this work. By applying deep reinforcement learning methods, the analytics tasks on the specified cameras are dynamically selected to offload according to the current network conditions, to maximize the accuracy of the task over a period of time while satisfying the task response latency constraint. The simulation results show that the proposed method in this paper can guarantee the delay of tasks and maximize the task accuracy.
keywords: video analytics mobile edge computing camera cluster task offloading deep reinforcement learning
文章编号: 中图分类号: 文献标志码:
基金项目:
Author Name | Affiliation | |
He Mu | China Huadian Engineering Co., LTD. | hem@chec.com.cn |
Sun Yue | China Huadian Engineering Co., LTD. | suny@chec.com.cn |
Pang Qifang | China Huadian Engineering Co., LTD. |
引用文本: