###
DOI:
电力大数据:2023,26(7):-
←前一篇   |   后一篇→
本文二维码信息
基于VAR的电能表降维误差估计模型
虞亦隆, 李佳鋆, 王敏, 胡腾耀
(国网上海市电力公司市北供电公司)
VAR-based dimensionality reduction error estimation model of electric energy meter
Yu Yilong, Li Jiayun, Wang Ming, Hu Tengyao
(Shibei Power Supply Company,State Grid Shanghai Municipal Electric Power Company)
摘要
图/表
参考文献
相似文献
本文已被:浏览 122次   下载 921
投稿时间:2023-02-16    修订日期:2023-07-28
中文摘要: 为达到远程监控电能表状态并及时准确发现电能表异常的目的,本文提出了一种基于VAR的电能表降维误差估计模型,通过对于电能表电量数据的获取、分析及筛选,采用主成分分析方法(PCA)对于原始数据进行降维,通过向量自回归模型(VAR)提取时间序列中的特征,从而准确预测电能表使用电量并对比出用电异常电能表。其中PCA降维算法处理了实际模型的不可解性,VAR自回归算法提高了估计的稳定性和精度,相较于传统方法具有预测准确度高,所需数据量小的特点。为验证该方法的有效性和实用性,将该方法应用于实际台区中测试,通过对于台区中127块电表半年内的用电数据进行分析,准确定位出8个异常电能表。结果表明,该方法不需要提前独立计算网损,能够实时估计智能电表误差和网损率。
Abstract:In order to achieve the purpose of remotely monitoring the status of power meters and accurately discovering abnormalities of power meters in time, this paper proposes a VAR-based power meter dimensionality reduction error estimation model, which is based on acquiring, analyzing and screening the power meter data, adopting the principal component analysis (PCA) method to reduce the dimensionality of the original data, and extracting the features in the time series through the vector autoregressive model (VAR), so as to accurately predict the power meter consumption and compare the abnormal power meters. The energy meter uses electricity and compares the abnormal energy meters. The PCA dimensionality reduction algorithm deals with the unsolvability of the actual model, and the VAR autoregressive algorithm improves the stability and accuracy of the estimation, which is characterized by high prediction accuracy and small amount of required data compared with the traditional method. In order to verify the effectiveness and practicability of the method, the method is applied to the actual station area for testing, and eight abnormal meters are accurately located by analyzing the electricity consumption data of 127 meters in the station area within half a year. The results show that the method does not need to calculate the network loss independently in advance, and can estimate the smart meter error and network loss rate in real time.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: