本文已被:浏览 196次 下载 832次
投稿时间:2022-09-13 修订日期:2023-03-06
投稿时间:2022-09-13 修订日期:2023-03-06
中文摘要: 在网络空间精准、快速、全面地进行网络资产探测是实现数字资产安全有效管理的前提,而识别操作系统是网络资产探测的基础,通过对流量中的操作系统信息的识别可以对已知漏洞进行预防范。本文主要提供了一种基于卷积神经网络的操作系统指纹快速识别方法,设计和构建了以ReLU函数作为激活函数的二层卷积模型且增加了BN层、池化层、全连接层,通过使用流量探测分析工具p0f将其指纹库操作系统指纹数据作为训练集,对收集到的流量数据作为测试集进行指纹识别测试,并将SVM方法和决策树方法与本文构建模型进行对照组实验。实验结果表明,本文操作系统识别模型具有较高的收敛速度和准确率,且平均判别准确率相比于SVM算法和C4.5决策树算法提高了13和6个百分点,证明本文研究的模型在操作系统识别方面具有良好的性能。
Abstract:In cyberspace, accurate, rapid and comprehensive network assets detection is the premise of realizing safe and effective management of digital assets, rather identification of operating system is the foundation of network asset detection. The identification of operating system information in traffic can take precautions again known vulnerabilities. This paper provides a kind of operating system fast fingerprint identification based on Convolution Neural Network, design and build the two-layer convolution model which uses ReLU function as the activation function and increased the BN layer, pooling layer, link layer, by the use of the traffic detection analysis tools p0f and take the fingerprint data of its fingerprint database operating system as the training set, The collected traffic data was used as a test set for fingerprint identification test, and the SVM method and decision tree method were combined with the model constructed in this paper for control experiment. Experimental results show that the proposed operating system recognition model has high convergence speed and accuracy, and the average discrimination accuracy is 13 and 6 percentage points higher than that of SVM algorithm and C4.5 decision tree algorithm, which proves that the proposed model has good performance in operating system recognition.
keywords: cyberspace asset detection deep learning Convolutional Neural Network(CNN) operating system fingerprint recognition p0f
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
马登辉* | 国网青海电力公司电力科学研究院 | 137762692@qq.com |
李宗容 | 国网青海电力公司电力科学研究院 | |
景延嵘 | 国网青海电力公司电力科学研究院 | |
李楠芳 | 国网青海电力公司电力科学研究院 | |
王旭 | 国网青海电力公司 |
引用文本: