本文已被:浏览 202次 下载 942次
投稿时间:2022-06-03 修订日期:2022-06-23
投稿时间:2022-06-03 修订日期:2022-06-23
中文摘要: 随着人口老龄化的加深,独居老人数量快速增长,如何及时检测发现老人出现异常情况成为小区管理的迫切需求。另一方面,智能电表技术的发展让用电数据的采集更加精确和及时,使得实时检测老人用电数据异常成为可能,但如何对此海量用电数据进行分析成为了难点。为此,文章提出了一种基于序列模式挖掘的独居老人用电数据预警模型,从历史数据中挖掘了老人用电特征的共性和特性,同时综合考虑了时间、天气数据等外部因素,通过深度学习进行异常检测。相比传统的检测方法,本文提出的模型能更加快速准确地检测异常,为独居老人的生活提供了安全保障,显著降低了社区管理人员的压力。在真实数据集上的实验结果验证了该模型的有效性。
Abstract:With the deepening of population aging, the number of elderly people living alone is increasing rapidly. How to timely detect the abnormal situation of the elderly has become an urgent demand of community management. On the other hand, the development of smart electricity meter technology makes the collection of electricity consumption data more accurate and timelier, which makes it possible to detect the abnormal electricity consumption of the elderly in real time. But how to analyze the massive power consumption data has become a difficulty. Therefore, this paper proposes an early warning model using electricity consumption data for the elderly living alone based on sequential pattern mining, which mines the generality and characteristics from electricity consumption data of the elderly, and comprehensively considers external factors such as time and weather to detect anomalies through deep learning. Compared with traditional detection methods, the model proposed in this paper can detect abnormalities more quickly and accurately, provide security for the life of the elderly living alone, and significantly reduce the pressure of community managers. Experimental results on real data sets verify the validity of the proposed model.
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
金高铭* | 国网江苏电力常州供电分公司 | gmjin1877@qq.com |
周钟炜 | 国网江苏电力常州供电分公司 | |
卢陈越 | 国网江苏电力常州供电分公司 |
引用文本: