本文已被:浏览 340次 下载 875次
投稿时间:2022-06-01 修订日期:2022-06-01
投稿时间:2022-06-01 修订日期:2022-06-01
中文摘要: 目前,变电设备信息化程度不断提高,对二次设备各模块提出更高的数字化要求。为解决二次设备压板状态人工识别程序繁杂、耗时长、容易出错等问题,提高压板巡视效率,维护二次设备安全稳定运行,本文通过研究比对机器学习算法和深度学习目标检测算法等方法的难易程度和准确率等因素,最终选择YOLOv3算法。将压板标准态文档转换成json数据后,使用基于imagenet的YOLOv3-darknet53预训练模型,导入压板开关图像样本集。使用LabelImg标注样本集后,进行深度学习得出训练后模型,运用该模型得到现场压板图识别数据,将标准态数据与实际图片数据对比绘制图形,实现压板开关状态准确识别和标注。结果表明,压板开关位置、开关状态识别成功率达到99%,有效提升了压板巡视工作效率和准确度,极大提高了二次设备数字化水平。
Abstract:At present, the degree of informatization of substation equipment is constantly improving, and higher digital requirements are put forward for each module of secondary equipment.In order to solve the problems of complicated, time-consuming and error-prone manual identification procedures for the state of the secondary equipment, improve the inspection efficiency of the pressure plate, and maintain the safe and stable operation of the secondary equipment,this paper studies and compares the difficulty and accuracy of machine learning algorithms and deep learning target detection algorithms,and finally chooses the YOLOv3 algorithms.After converting the platen standard state document into json data, use the imagenet-based YOLOv3-darknet53 pre-training model and import the platen switch image sample set.After labeling the sample set with LabelImg, perform deep learning to obtain the trained model. Use this model to obtain the identification data of the on-site platen diagram, compare the standard state data with the actual picture data and draw the graphics, so as to realize the accurate identification and labeling of the platen switch state.The results show that the success rate of pressure plate switch position and switch status recognition reaches 99%, which effectively improves the work efficiency and accuracy of pressure plate inspection, and greatly improves the digitization level of secondary equipment.
keywords: secondary equipment protection platen image identification image conversion YOLOv3 deep learning
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
李天舒 | 山东鲁软数字科技有限公司 | axkeer@126.com |
高明* | 山东鲁软数字科技有限公司 | axkeer@126.com |
李秀芬 | 山东鲁软数字科技有限公司 | |
张俊岭 | 山东鲁软数字科技有限公司 |
引用文本: