###
DOI:
电力大数据:2023,26(1):-
←前一篇   |   后一篇→
本文二维码信息
基于深度学习的电网安全态势感知方法
杨开通, 刘甲云, 蒋瑞祥, 刘晶, 齐鹏
(内蒙古巴音新能源有限公司)
Power network security situation awareness method based on deep learning
yangkaitong, liujiayun, jiangruixiang, liujing, qipeng
摘要
图/表
参考文献
相似文献
本文已被:浏览 564次   下载 868
投稿时间:2021-07-30    修订日期:2022-07-05
中文摘要: 为了提高电力网络的安全性,实现电力网络的可持续运行,引入深度学习神经网络,开展对电力网络安全态势感知方法的设计研究,以此提出一种全新的安全态势感知方法。本文采用电力网络安全态势评估指标,结合各类电力网络环境因素,对未来可能发生的电力网络变化趋势进行预测;明确电力网络安全态势评估指标及其相关表述含义后,对电力网络安全态势风险进行综合量化,通过划分电力网络安全态势风险量化及等级,构建基于深度学习的电力网络安全态势预测模型,验证模拟安全态势感知预测结果。通过真实电力网络算例的方式,得出新的安全态势感知方法应用在现实电力网络运行环境中时,能够实现对其安全等级的精准预测,可以为电力网络的可持续运行提供安全保障条件,具有一定的实用性。
Abstract:In order to improve the security of power network and realize the sustainable operation of power network, deep learning neural network is introduced to design and study the security situation awareness method of power network, and a new security situation awareness method is proposed. This paper uses the power network security situation assessment index, combined with all kinds of power network environmental factors, to predict the possible future power network change trend; After the power network security situation assessment index and related expression meanings are defined, the power network security situation risks are comprehensively quantified. By dividing the power network security situation risk quantification and grade, the power network security situation prediction model based on deep learning is constructed to verify the simulation security situation awareness prediction results. Through the example of real power network, it is concluded that when the new security situation awareness method is applied in the operation environment of real power network, it can achieve accurate prediction of its security level and provide security guarantee conditions for the sustainable operation of power network, which has certain practicability.
文章编号:     中图分类号:    文献标志码:
基金项目:
Author NameAffiliationE-mail
yangkaitong  tkyangkt007@163.com 
liujiayun  232203179@qq.com 
jiangruixiang   
liujing   
qipeng   
引用文本: