###
DOI:
电力大数据:2020,23(04):-
←前一篇   |   后一篇→
本文二维码信息
多源信息融合的微服务化电网事故追忆
(广西电网电力调度控制中心)
Microservice-based Post Disturbance Review with Multi-source Information Fusion
WEI Hongbo1, CAO Wei2, YE Guinan2, WEI Changfu2, HE Yini2
(1.Power Dispatch and Control Center of Guangxi Power Grid Co.,Ltd.;2.Power dispatch and Control Center of Guangxi Power Grid Co.,Ltd.)
摘要
图/表
参考文献
相似文献
本文已被:浏览 744次   下载 14
投稿时间:2020-04-26    修订日期:2020-05-02
中文摘要: 提出一种在云计算平台上构建大数据环境下支持多源信息融合的微服务化电网事故追忆系统方法,解决传统电网事故追忆系统耦合度高、灵活性差、不易扩展等问题,满足事故追忆系统对短时间内解析大规模故障数据的要求。根据功能需求,将系统重构为电网模型、事故记录、操作记录和人机交互四个细粒度微服务;在此基础上,将每一个数据源接入独立的微服务模块,避免服务间的耦合和堆叠。结合云平台监控系统采集的容器集群负载参数,提出了基于长短期记忆神经网络算法的资源预测模型,提前对容器资源进行预测调度,避免负载突变对系统效率的影响,提升容器资源调度水平。结果分析表明,采用所述方法实现的微服务化电网事故追忆系统可靠性达99.999980%,具有良好的响应效率。
Abstract:This paper proposes a method of constructing a microservice-based post disturbance review system that supports multi-source information fusion on cloud computing platform, effectively solves the problems of high system coupling, poor flexibility, and difficult expansion of the current system, as well as satisfy the requirements of analyzing large-scale fault data within few minutes. According to the functional requirements, the system is reconstructed into four fine-grained microservices of grid model, accident record, operation record and human-computer interaction; on this basis, each data source is separately connected to a microservice module to avoid coupling between services and stacked. Combining the load parameters of the container cluster collected by the cloud platform monitoring system, a resource prediction model based on long short-term memory neural network is proposed to predict and schedule container resources in advance, avoiding the impact of sudden load changes on system efficiency and improve the container resource scheduling level. The result analysis shows that the reliability of the microservice-based post disturbance review system realized by the method reaches 99.999980%, and has pretty response efficiency.
文章编号:     中图分类号:    文献标志码:
基金项目:中国南方电网有限责任公司科技项目(智能电网省地调度主站边缘计算集群技术研发与工程示范, GXKJXM20190619);广西电网有限责任公司科技项目(基于云平台的省地一体化电网分析中心研究与开发, GXKJXM20180391)
引用文本: