###
DOI:
电力大数据:2020,23(5):-
←前一篇   |   后一篇→
本文二维码信息
基于生存分析模型的电力设备故障预测方法
王春波, 陈 刚, 周 融, 马莉娟
(江苏电力信息技术有限公司、南京市鼓楼区北京西路22号二、三层 210000)
Fault Prediction Method of Power Equipment Based on Survival Analysis Model
Wang Chunbo, Chen Gang, Zhou Rong, Ma Lijuan
(Jiangsu Electric Power Information Technology Co.,Ltd? Nanjing,Jiangsu,China,210000)
摘要
图/表
参考文献
相似文献
本文已被:浏览 897次   下载 16
投稿时间:2020-03-25    修订日期:2020-06-30
中文摘要: 本文基于某地区三年内的电力设备运行和维修数据,对设备发生故障、引起维修费用的概率进行解释,提出一种基于生存分析模型的电力设备维修成本优化方法,分析影响电力设备故障和维修的关键性影响因素。针对大量电力设备的历史运行和维修数据,观察设备从投入生产到发生故障之间的时间间隔,分析设备的众多相关数据特征对于设备故障率的影响,建立Cox比例风险分析模型,并在基准生存率的基础上得到生存率函数,对电力设备的故障率和维修成本做出预测。实验结果表明,本文构建的电力设备维修预测模型能够为电力企业维修决策提供有力的理论依据,解决了电网企业停电成本高、临检频繁、维修不足、维修过度、盲目维修等问题,具有广泛的应用和推广价值。
Abstract:Based on the operation and maintenance data of power equipment in a certain area within three years, this paper explains the probability of equipment failure and maintenance costs, and proposes a method of power equipment maintenance cost optimization based on survival analysis model, and analyzes the key influencing factors of power equipment failure and maintenance. Based on the historical operation and maintenance data of power equipment, we observe the time interval between the equipment placing into production and failure, analyze the impact of various data features of power equipments upon failure rate, establish Cox proportional hazard analysis model, and finally obtain the function of survival rate based on the baseline survival rate, which can be used for predicting the failure rate and maintenance cost for power equipments. The experimental results show that this paper has practical significance and application value for predicting the failure rate of power equipment and optimizing the maintenance cost of equipment.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: