本文已被:浏览 751次 下载 13次
投稿时间:2020-03-20 修订日期:2020-04-02
投稿时间:2020-03-20 修订日期:2020-04-02
中文摘要: 针对输电线路在长期运维过程中出现的异常主要依靠人工定期巡线来排查,无法高效、准确的对隐患进行预判的局限,本文提出了基于BP神经网络方法对输电线路典型隐患预放电识别。首先在南方电网防冰减灾重点实验室梅花山基地搭建起输电线路放电试验平台,得到了输电线路在树障和污秽绝缘子两种典型隐患的预放电脉冲电流波形数据。继而绘制得到放电信号中放电量,放电次数,相位参数的三个二维统计图,在此基础上提取并构建得到放电特征参量数据库,再将特征量带入反向传播神经网络分类器中对线路隐患模型进行训练。最后对模型测试的结果表明,采用BP神经网络算法能够有效识别输电线路中典型的隐患,且识别准确率达到92%以上,进而为输电线路隐患识别提供了参考。
Abstract:Aiming at the abnormal state of transmission line in the long-term operation and maintenance process, the manual periodic line inspection method is mainly used for troubleshooting, and the hidden danger cannot be predicted efficiently and accurately. This paper presents a method for pre-discharge identification of typical hidden dangers in transmission lines based on BP neural network. Firstly, a typical test platform for transmission lines is established using Key Laboratory of Ice Prevention and Disaster Reducing of China Southern Power Grid in Plum Blossom Hill. The pre-discharge pulse current waveform data of hidden dangers at the transmission line under typical tree barrier and polluted insulator are obtained. Then the discharge quantity, discharge times and phase are extracted. These parameters are extracted from these data to obtain a feature parameter database, and these feature quantities are brought into the back-propagation(BP) neural network classifier for training the model of hidden dangers. Finally, the model test results show that BP neural network algorithm can effectively identify typical types of hidden dangers in transmission lines and the recognition accuracy rate is above 92%, which provides a reference for the diagnosis of hidden dangers in transmission lines.
文章编号: 中图分类号:TM75 文献标志码:
基金项目:
作者 | 单位 | |
杨旗* | 贵州电网有限责任公司电力科学研究院 | yangqi_cqu@163.com |
曾华荣 | 贵州电网有限责任公司电力科学研究院 | |
黄欢 | 贵州电网有限责任公司电力科学研究院 | |
马晓红 | 贵州电网有限责任公司电力科学研究院 | |
毛先胤 | 贵州电网有限责任公司电力科学研究院 | |
张露松 | 贵州电网有限责任公司电力科学研究院 | |
罗国强 | 贵州电网有限责任公司电力科学研究院 |
引用文本: