###
DOI:
电力大数据:2020,23(3):-
←前一篇   |   后一篇→
本文二维码信息
实时电价下用户侧电力需求响应模型优化策略及数字仿真谈竹奎1,汪元芹2,赵菁2,刘斌1,刘敏2
谈竹奎1, 汪元芹2, 赵菁3, 刘斌4, 刘敏3
(1.贵州电网电力科学研究院;2.贵州大学;3.贵州大学电气工程学院;4.贵州电网有限责任公司电力科学研究院)
User-side power demand response model optimization strategy and digital simulation under real-time electricity prices
tanzhukui1, wangyuanqin2, zhaojing3, liubin4, liumin3
(1.Electric Power Research Institute of Guizhou Power Grid Co.Ltd;2.Guizhou University,;3.School of Electrical Engineering, Guizhou University,Guizhou;4.Electric Power Research Institute of Guizhou Power Grid Co.Ltd.)
摘要
图/表
参考文献
相似文献
本文已被:浏览 804次   下载 6
投稿时间:2020-02-28    修订日期:2020-03-16
中文摘要: 为解决智能电网发展中用户参与电力市场运营的响应积极性以及用户收益最大化问题,本文在经济学原理基础上,引用需求价格弹性系数表征用户的用电量随电价的变化情况,建立实时电价下的用户负荷调节能力模型,根据该模型,进一步研究了基于实时电价的用户侧电力需求响应模型优化策略,考虑用户在不同响应场景和不同负荷调节潜力下的需求响应。解决供电与用电间的电力供需不平衡问题,实现用户积极响应及其利益最大化,并提高系统稳定性与安全性。以某地需求响应系统为例,对进入现货市场交易的用户进行数字仿真,通过算例分析表明该模型能有效改善用电负荷曲线,减小用户购电成本,验证了基于实时电价下的电力需求响应优化策略的优化效果。
Abstract:In order to solve the problem of users'' enthusiasm for participating in the power market operation and maximizing user''s revenue in the development of smart grids, this article uses the elasticity coefficient of demand price to characterize the change of user''s electricity consumption with electricity prices based on economic principles, and establishes a user load adjustment capability model under real-time electricity prices. Based on this model, the user-side power demand response model optimization strategy under real-time electricity prices is further studied, considering the user''s demand response under different response scenarios and different load regulation potentials. Solve the imbalance of power supply and demand between power supply and consumption, achieve positive user''s response and maximize user''s benefits, and improve system stability and security. Taking a demand response system in a certain place as an example, digital simulation is performed on users entering the spot market. The analysis of examples shows that the model can effectively improve the power load curve and reduce the user''s electricity purchase cost, and verifies the optimization effect of the power demand response optimization strategy based on real-time electricity prices.
文章编号:     中图分类号:TM73    文献标志码:
基金项目:贵州电科院“基于人工智能的电力指纹负荷/设备识别关键技术研究”(面向能源互联网的实时需求侧响应理论研究与完善)研究项目(066600201903010XT00003)。
引用文本: