本文已被:浏览 1109次 下载 9次
投稿时间:2019-12-18 修订日期:2020-01-06
投稿时间:2019-12-18 修订日期:2020-01-06
中文摘要: 无人机进行电力线路巡检的作业模式在南方电网已经开展了一些示范验证并获得一定的推广应用,目前的巡检方式多为无人机或有人机挂载激光雷达进行巡检。为提高线路巡检效率、提高隐患目标识别准确度,本文提出激光雷达和可见光相机一体化应用的方法来提高巡检自动化程度、提高巡检精细度、提高作业效率及可靠性。首先针对一次飞行同步采集巡检区域的激光点云数据和可见光影像数据,在对采集的数据分别进行相应的预处理;然后将点云数据和影像数据融合处理分析,实现输电线路隐患目标自动识别和精准定位。采用旋翼无人机实际巡检获取的输电线路激光点云数据和影像数据对该过程进行了验证,试验结果表明,基于无人机载多载荷的输电线路巡检具有较高的自动化程度和准确性,缺陷识别检测的水平距离误差为0.1467米,缺陷识别的垂直距离误差为 0.1025米,缺陷识别的净空距离误差为0.1575米,识别检测效果良好,对输电线路巡检具有重要的意义。
中文关键词: 输电线路,无人机,激光雷达,影像数据,隐患识别
Abstract:The power line inspection operating by the UAV has been carried out in the China Southern Power Grid recent years and has get a certain promotion application. The current inspection methods are mostly drone or manned aircraft mounted with lidar. In order to improve the efficiency and the accuracy of the line inspection, this paper proposes a method to integrating the LiDAR and image data among the data processing. Firstly, we collect the point cloud data and the image data in the inspection area, and complete the corresponding preprocessing. Then, we use these data to automatic analyze and extract interesting information for the transmission line. We select three actual flight data as test data to verify the above processing. The result show that this processing has a good performance in the automation and accuracy, correspondingly, the horizontal error is 0.1467 meters, the vertical error is 0.1025 meters, and the clearance error is 0.1575 meters, which is of great significance for the inspection of transmission lines.
文章编号: 中图分类号:TM75 文献标志码:
基金项目:
作者 | 单位 | |
陈科羽* | 贵州电网有限责任公司输电运行检修分公司 | 294896298@qq.com |
王萍 | 天津航天中为数据系统科技有限公司 | |
石书山 | 贵州电网有限责任公司输电运行检修分公司 | |
周筑博 | 天津航天中为数据系统科技有限公司 | |
杨鹤猛 | 天津航天中为数据系统科技有限公司 |
引用文本: