本文已被:浏览 395次 下载 4次
投稿时间:2019-08-06 修订日期:2019-08-26
投稿时间:2019-08-06 修订日期:2019-08-26
中文摘要: 为解决传统方法识别主网电流失流故障准确率低的问题,本文提出了一种基于反向传播神经网络的失流故障智能识别方法。本文利用反向传播的神经网络算法,通过梯度下降的方式反向修正各层权值,使网络输出误差达到可以接受的程度,从而达到对失流故障识别具有很好的自学习自适应能力的目的。首先根据对主网失流故障特征的研究,将失流故障分为持续失流与断续失流两种,构造对应指标,综合所有指标构建失流故障特征提取体系,最后建立反向神经网络来拟合失流故障提取体系。对数据进行识别,建立专家样本库,利用反向神经网络进行离线训练,训练完成后固定权值用于失流故障识别,从而准确输出失流故障事件。经实例验证,所提方法在识别准确率和识别效率优于一般分类识别方法,可实现失流故障的就地识别。
Abstract:Aiming at the problem of low accuracy of current-lossing identification in main network by traditional methods, an intelligent identification method of current-lossing based on Back Propagation (BP) neural network is proposed. In this paper, make use of back-propagation neural network algorithm, through the mode of gradient descent to reverse the weights of each layer, the network output error is acceptable, and it has good self-learning ability for fault identification of current-lossing. According to the research of current-lossing fault in this paper, firstly construct indicators of continuous current-lossing and discontinuous current-lossing, build up the fault feature extraction system based on all indicators, finally BP network is established to fit current-lossing extraction system, Identify the data, then Set up the expert samples, and train BP neural network off-line, fix weight value after training. Through the test by example, this model is superior to the general classification model and has high discrimination of current-lossing fault recognition. It can provide a forceful basis for solving the problem.
keywords: three-phase current, BP neural network, continuous current-lossing, discontinuous current-lossing, intelligent identification
文章编号: 中图分类号:TM769 文献标志码:
基金项目:
作者 | 单位 | |
郭文翀* | 广东电网有限责任公司计量中心 广东省 广州市 | 415634454@qq.com |
蔡永智 | 广东电网有限责任公司计量中心 广东省 广州市 | |
韦晓明 | 广西电网有限责任公司贺州供电局 广西省 贺州市 | |
危秋珍 | 广西电网有限责任公司河池供电局 广西省 河池市 |
引用文本: