本文已被:浏览 510次 下载 849次
投稿时间:2019-07-02 修订日期:2019-07-24
投稿时间:2019-07-02 修订日期:2019-07-24
中文摘要: 近年来,大数据产业保持高速发展态势,而过程工业大数据建模技术发展相对缓慢。在该背景下,以火电机组过程大数据为研究对象,首先分析火电机组过程大数据的特点及其进行大数据建模所面临的困难;接下来对现有国内外火电机组过程大数据建模方法及存在问题进行了分析;最后提出一种基于火电机组过程大数据的全工况自适应传递函数建模方法,该方法应用数据挖掘技术选取不同工况下的合格建模数据,通过云计算平台应用数据驱动传递函数建模方法建立全工况范围内大量的系统模型,再应用线性变参数及数学插值等算法对大量系统模型进行融合,最终获取系统全工况自适应传递函数模型。该建模思路为火电机组等过程工业大数据建模提供了一种较好的方法参考。
Abstract:Compared with the rapid development of big data industry in recent years, the development of big data modeling technology in process industry is relatively slow. In this context, the big data modeling technology of thermal power units is selected as the research object. Firstly, the characteristics of big data of thermal power units and the difficulties faced in big data modeling are analyzed. Then, the big data modeling methods and existing problems of thermal power units at home and abroad are studied. Finally, an all-condition adaptive transfer function modeling method based on big data of thermal power units is proposed. This method uses data mining technology to select qualified modeling data under different operating conditions, and applies data-driven transfer function modeling method to build a large number of system models in the whole operating conditions through cloud computing platform. Then, linear parameter varying and mathematical interpolation algorithms are used to fuse these system models, and finally the adaptive transfer function model of the system under all operating conditions is obtained. This modeling method provides a good reference for big data modeling of thermal power plants and other process industries.
文章编号: 中图分类号: 文献标志码:
基金项目:国电科技环保集团股份有限公司科技项目(KH-2018-02)
作者 | 单位 | |
尹二新* | 北京国电龙源环保工程有限公司 | 304462130@qq.com |
张同卫 | 北京国电龙源环保工程有限公司 | |
唐坚 | 北京国电龙源环保工程有限公司 | |
路光杰 | 北京国电龙源环保工程有限公司 | |
陈鸥 | 北京国电龙源环保工程有限公司 | |
杨建辉 | 北京国电龙源环保工程有限公司 | |
张军 | 北京国电龙源环保工程有限公司 |
引用文本: