本文已被:浏览 494次 下载 867次
投稿时间:2019-06-25 修订日期:2019-07-26
投稿时间:2019-06-25 修订日期:2019-07-26
中文摘要: 针对现行状态检修方法在变电设备状态感知单一、系统信息孤岛、状态检修效率低下等方面的问题,本文基于大数据技术,提出变电设备状态多维感知及智能诊断系统。系统通过打造边端变电设备多维感知体系,实现设备多维、实时、全景感知,并构建统一边缘物联代理,完成感知数据就地预处理,在此基础上融合设备状态多源异构数据,搭建云端大数据平台,开展设备状态大数据智能分析诊断,实现设备精准检修。文章首先对基于大数据的变电设备状态多维感知及智能诊断系统整体框架进行介绍,然后详细阐述了系统边端多维感知和云端智能诊断部分的设计及功能。最后,选取主变压器油温-油位关联状态量为例进行状态分析评价的算例分析,算例结果证明了所提系统功能的有效性和实用性,为提高变电设备运检效率提供有效技术支撑。
Abstract:Aiming at the problems of the current state maintenance method in the single state of substation equipment, the island of system information and the low efficiency of state maintenance, this paper proposes a multi-dimensional sensing and intelligent diagnosis system for substation equipment based on big data technology. The system realizes the multi-dimensional, real-time and panoramic sensing of the device by creating a multi-dimensional sensing system for the edge-changing equipment, and constructs a unified edge-interacting agent to complete the pre-processing of the perceptual data. On this basis, the device state multi-source heterogeneous data is merged by setting up a cloud big data platform. intelligent analysis and diagnosis of equipment status based on big data is carried out to achieve accurate equipment maintenance. The article first introduces framework of the multi-dimensional sensing and intelligent diagnosis system of substation equipment, then elaborates the design and function of the system edge multi-dimensional sensing and cloud intelligent diagnosis part. Finally, the main transformer oil temperature-oil level correlation state quantity is taken as an example to analyze the state analysis and evaluation. The results of the example prove the effectiveness and practicability of the proposed system function, and provide effective for improving the efficiency of the substation equipment.
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
黄红* | 重庆市电力公司江津供电分公司 | huanghong_hnu@126.com |
熊卓 | 重庆市电力公司江津供电分公司 | |
王宇 | 重庆市电力公司江津供电分公司 | |
雷桃玲 | 重庆市电力公司江津供电分公司 | |
王俊琪 | 重庆市电力公司江津供电分公司 |
引用文本: