本文已被:浏览 496次 下载 2次
投稿时间:2019-06-21 修订日期:2019-08-21
投稿时间:2019-06-21 修订日期:2019-08-21
中文摘要: 对着大云物移技术的广泛应用,客户对于移动式、碎片化服务要求越来越高,如何评价服务渠道效率,分析客户体验,预测渠道业务流量,发掘客户渠道迁移规律,并针对客户开展精准引流,实现渠道效率与客户体验的精准匹配。客服中心联合山西电力,选用时间序列算法建立预测模型,建立ARIMA模型对缴费业务量进行预测。首先对数据进行平稳的处理,然后通过ACF和PACF确定模型的参数,进行预测,经验证,模型效果较好,达到应用水平。
Abstract:With the wide application of new technologies, customers are demanding more and more mobile and fragmented services. How to evaluate service channel efficiency, analyze customer experience, predict channel business flow, explore customer channel migration rules, and carry out precise drainage for customers, so as to achieve precise matching between channel efficiency and customer experience. The customer service center combined with Shanxi Electric Power, using the time series algorithm to establish the prediction model and ARIMA model was used to forecast the payment volume. Firstly, the data are processed smoothly, then the parameters of the model are determined by ACF and PACF, and the prediction is carried out. The results show that the model has good effect and achieves the application level.
keywords: Payment Business Volume Time Series ARIMA Model Assumption Of Normality Confidence Interval
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
宫立华 | 国家电网有限公司客户服务中心 | lihua-gong@sgcc.com.cn |
杨菁* | 国家电网有限公司客户服务中心 | zjuyangjing@126.com |
刘鲲鹏 | 国家电网有限公司客户服务中心 | |
朱龙珠 | 国家电网有限公司客户服务中心 |
引用文本: