###
DOI:
电力大数据:2019,22(12):-
←前一篇   |   后一篇→
本文二维码信息
基于word2vec和XGBoost相结合的国网95598客服 投诉工单分类
段立, 徐鸿宇, 王懿, 赵莉, 刘冲, 郭娇
(重庆国网客户服务中心)
Based on the combination of word2vec and XGBoost, the State Grid 95598 customer service Complaint work order Classification
duanli, xuhongyu, wangyi, zhaoli, liuchong, guojiao
(Chongqing State Grid Customer Service Center)
摘要
图/表
参考文献
相似文献
本文已被:浏览 513次   下载 3
投稿时间:2019-06-20    修订日期:2019-09-03
中文摘要: 为了解决95598客服投诉工单的整理、归档等问题,其中包括:在人工进行归档的过程中出现的疏忽造成的归档随意问题,即归档准确性问题;人工对投诉工单进行差错点归纳的耗时问题,即效率问题;人工对客服投诉分析深度不足,无法精准快速定位用户诉求热点的问题,即深度问题。本文针对以上三个问题给出解决方案,采用word2vec和XGBoost相结合的方式达到对95598客服投诉工单精准归纳。在文本词向量化的过程中采用word2vec方法,得到单词的文本词向量;利用XGBoost算法对95598客服投诉工单进行分类归档,并且对历史投诉工单的责任部门、专业分类、诉求事件、差错点四个方面进行标注。该模型的分类准确率在83%-91%左右,有较好的的效果。基于工单分类的结果,并设计了相关的投诉类看板,更直观的对数据进行展示。
Abstract:In order to solve the problem of finishing and filing 95598 customer service complaints, including: the problem of archiving caused by negligence in the process of manual archiving, that is, the accuracy of archiving; the cost of manually inaccurate the complaints Time problem, that is, efficiency problem; manual analysis of customer service complaints is insufficient, and it is impossible to accurately and quickly locate the problem of user appeal hotspots, that is, depth problems. This paper gives a solution to the above three problems, using the combination of word2vec and XGBoost to achieve accurate summary of the 95598 customer service complaints. In the process of vectorization of text words, the word2vec method is used to obtain the text word vector of the word; the XGBoost algorithm is used to classify and archive 95598 customer service complaints, and the responsible department, professional classification, appeal event, and error point of the historical complaint work order Four aspects are marked. The classification accuracy of this model is about 83%-91%, which has a good effect. Based on the results of the work order classification, and related complaints board, the data is displayed more intuitively.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: