本文已被:浏览 482次 下载 5次
投稿时间:2019-06-20 修订日期:2019-09-03
投稿时间:2019-06-20 修订日期:2019-09-03
中文摘要: 为了解决在电费回收的过程中,遇到的回收不及时、回收难度大、电费回收不全等难点,严重影响了供电企业生产的最终经营成果。本文结合各个用户在近一年的各种生产活动产生的数据,建立与用户行为相关的模型。首先采用聚类的方法,根据最终得到的簇类,对重庆地区所有用户电费回收风险的类型有大致的认知。然后采用逻辑回归模型,并且针对高压、低压居民、低压非居民三种不同类型的用户分开进行分析建模,最终得到用户电费回收风险的得分。本文针对电费风险防控业务提出一种基于概率聚类逻辑回归模型,用于实现欠费风险精细化。分析、定位客户群体,提炼、归纳、总结客户特征,实现客户细分。基于客户细分结果提供精准的差异化服务。实践证明,该模型可为电网企业客户的风险评估实用化推广提供有效支撑。
Abstract:In order to solve the difficulties in recycling, the difficulties encountered in recycling, the difficulty in recycling, and the incomplete recovery of electricity charges have seriously affected the final operating results of the power supply enterprises. This paper combines the data generated by various users in various production activities in the past year to establish models related to user behavior. Firstly, the clustering method is adopted, and according to the clusters finally obtained, there is a general understanding of the types of electricity charge recovery risks of all users in Chongqing. Then the logistic regression model is adopted, and the three different types of users of high-voltage, low-voltage residents and low-voltage non-residents are separately analyzed and modeled, and the score of the user''s electricity fee recovery risk is finally obtained. This paper proposes a probabilistic clustering logistic regression model for the electricity cost risk prevention and control business, which is used to realize the refinement of the arrearage risk. Analyze and locate customer groups, refine, summarize, summarize customer characteristics, and achieve customer segmentation. Provide accurate and differentiated services based on customer segmentation results. Practice has proved that this model can provide effective support for the practical application of risk assessment for grid enterprise customers.
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
何容 | 重庆国网客户服务中心 | 915366842@qq.com |
张向东 | 重庆国网客户服务中心 | |
邱林 | 重庆国网客户服务中心 | |
陈俐冰 | 重庆国网客户服务中心 | |
周倩 | 重庆国网客户服务中心 | |
章妍 | 重庆国网客户服务中心 |
引用文本: