###
DOI:
电力大数据:2019,22(5):-
←前一篇   |   后一篇→
本文二维码信息
基于用电大数据的用电异常状态辨识方法
(1.贵州电网有限责任公司电力科学研究院;2.贵州电网有限责任公司兴义供电局)
Abnormal State Recognition Method Based on the Power Utilization Big Data Matrix
ZhangQiuyan1, CEN Yuanhong2, AN Jin3, DING Chao3, SHAO Zheng3, WANG Lanling1
(1.Electric Power Research Institute of Guizhou Power Grid Co., Ltd;2.Xingyi Power Supply Burean of Guizhou Power Grid.Co.,Ltd,Xingyi 562400 Guizhou;3.Xingyi Power Supply Burean of Guizhou Power Grid.Co.,Ltd)
摘要
图/表
参考文献
相似文献
本文已被:浏览 419次   下载 927
投稿时间:2018-12-29    修订日期:2019-01-18
中文摘要: 用电异常状态的辨识是用电环节的重点和难点。本文基于计量自动化系统智能电能表所采集的用电大数据,对用电异常状态辨识方法进行研究。首先,基于用电海量数据及高维随机矩阵理论,研究分析了大维随机矩阵的协方差矩阵特征谱分布;然后,根据矩阵的统计特性提出基于用电大数据矩阵的用电异常状态辨识方法;最后,以贵州实际用电数据为例进行了仿真研究。仿真结果表明该文方法不仅能满足电网对可视性、时效性、可靠性、安全性的迫切要求,而且为数据驱动用电环节智能化、可视化监控提供了新思路。
Abstract:The identification of the abnormal state of power is the key and difficult point for electricity link. In this paper, based on Metrological automation systemcan only collect the electricity consumption big data collected by the terminal smart energy meter, and study the method of identifying the abnormal status of electricity consumption. Firstly, based on the theory of large-scale data and high-dimensional random matrices, the characteristic spectrum distribution of the covariance matrix of large-dimensional random matrices is studied and analyzed; then, a power abnormal state identification method based on large data matrices is proposed based on the statistical properties of the matrix. Finally, a simulation study was conducted using the actual electricity data in Guizhou as an example. Simulation results show that the proposed method not only satisfies the urgent requirements of the grid for visibility, timeliness, reliability, and security, but also provides a new idea of intelligent and visual monitoring of data-driven power usage.
文章编号:     中图分类号:    文献标志码:
基金项目:基于多维用电大数据的电力经济因素分析及经济评价系统研究(GZ2015-3-0133)
引用文本: