本文已被:浏览 948次 下载 17次
投稿时间:2018-12-26 修订日期:2020-01-06
投稿时间:2018-12-26 修订日期:2020-01-06
中文摘要: 针对风电场风电功率波动性强,中长期风功率预测精度不高的问题,本文提出了一种基于高层气象数据的风电场中长期风功率预测方法。首先通过规则化和规范化高层气象数据,找出并完善与风功率强相关的气象因素;其次,结合大气运动方程与和下降梯度方程,建立高层气象数据的演变物理模型;随后,采用大数据聚类和挖掘等算法,对多维度海量高层大气数据进行分类,并基于数据对推导的高层大气数据模型进行训练和修正;最后,基于模型和大数据机器学习方法,构建高层大气运动数据和风电场历史数据之间规律,采用统计分析与物理模型相结合方法,对风电场中长期风功率进行预测。通过结合中国西南某地的风资源数据对某风电场中长期风功率进行预测,证明本文提出的方法能有效提高风电场中长期风功率预测精度。
Abstract:Aiming at the problem that the wind power of wind farms is strong and the prediction accuracy of medium and long-term wind power is not high, this paper proposes a method for predicting mid- and long-term wind power of wind farms based on high-level meteorological data. Firstly, by regularizing and normalizing high-level meteorological data, we can find and improve meteorological factors that are strongly related to wind power. Secondly, we combine the atmospheric motion equation with the descending gradient equation to establish an evolutionary physical model of high-level meteorological data. Class and mining algorithms classify multi-dimensional massive upper-level atmospheric data, and train and correct the derived upper-level atmospheric data model based on data. Finally, build high-level atmospheric motion data and wind farm based on model and big data machine learning methods. The law between historical data is based on the combination of statistical analysis and physical model to predict the long-term wind power of wind farms. The mid- and long-term wind power of a wind farm is predicted by combining wind resource data from a certain area in southwestern China. It is proved that the proposed method can effectively improve the accuracy of mid- and long-term wind power prediction of wind farms.
keywords: Wind power prediction upper atmosphere big data wind farm
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
李飞* | 贵州电网有限责任公司信息中心 | lifei@im.gzxt.csg |
纪元 | 贵州电网有限责任公司信息中心 |
Author Name | Affiliation | |
lifei | Information Center of Guizhou Power Grid Co., Ltd. | lifei@im.gzxt.csg |
jiyuan | Information Center of Guizhou Power Grid Co., Ltd. |
引用文本: