###
DOI:
电力大数据:2019,22(4):-
←前一篇   |   后一篇→
本文二维码信息
基于小波变换和BP神经网络的时序风电功率预测
(国网福建省电力有限公司)
Time-series Wind Power Prediction Based on Wavelet Transform and BP Neural Network
(State Grid Fujian Electric Power Company Limited,Fuzhou)
摘要
图/表
参考文献
相似文献
本文已被:浏览 468次   下载 914
投稿时间:2018-11-12    修订日期:2018-11-20
中文摘要: 风电功率具有波动性,不论对于发电厂抑或是电网,准确地预测风电功率具有重要意义。本文研究了小波变换的原理和方法及BP神经网络的原理和算法,并建立了一种结合小波分解和BP神经网络的风电功率预测方法。本文的方法首先对风电出力历史功率数据进行小波分解,在各个分量样本上分别建立BP神经网络后再进行预测。最后,仿真结果验证了本文方法的有效性。
Abstract:The wind power is always changing. It is meaningful for the power plants and the power grids to predict the wind power accurately. The basic principles and algorithms of wavelet transform and BP neural network are studied in this paper. A wind power prediction method based on wavelet transform and BP neural network is proposed. This method first uses wavelet transform to decompose the historical power data, then utilizes BP neural network to predict wind power. The simulation results verify the effectiveness of the propsed method in forecasting the wind power.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: