###
DOI:
电力大数据:2019,22(7):-
←前一篇   |   后一篇→
本文二维码信息
基于电力生产大数据平台的火电机组水岛的运行优化系统
(国家能源投资集团北京国电智深控制技术有限公司)
Remote Operation-optimization Diagnostic System of Water Island Based On Power Generation Big Data
(BEIJING GUODIANZHISEN CONTROL CO.LTD)
摘要
图/表
参考文献
相似文献
本文已被:浏览 725次   下载 1060
投稿时间:2018-07-30    修订日期:2018-12-06
中文摘要: 在火力发电机组中,由原水预处理、循环冷却水、锅炉补给水、排水等系统组成的水岛是机组安全、环保、稳定运行的重要组成部分。水岛的各子系统一般由彼此独立的系统完成生产工艺的控制,整个水岛的信息难以实现全局监控、计算、分析,管理粗放,经济性能较差。随着国家对水资源管理和环境保护的日益重视,加上发电企业本身也有节能节水,精益化管理,提高机组运行经济效益的需求,需要一个运行优化系统来监视和优化水岛的运行。本文介绍了一种基于电力生产大数据平台的火电机组水岛的运行优化系统,利用AIRDB实时数据库、MARIADB关系型数据库、NOSQL数据库和人工智能技术,远程采集存储水岛生产的实时数据、关系型数据和其他非机构化数据,实现对接入的水岛进行远程状态监控、实时分析、智能报警,并运用人工智能、大数据技术动态分析数据,指导就地的操作人员进行操作,从而进行水岛的运行优化。该系统已在初步在某发电企业进行应用,在电厂节能节水降耗和提高水岛的运营管理水平上发挥了重要作用。
Abstract:The water island system of Thermal power generating unit including raw water pretreatment, circulating cooling water, boiler supply water and drainage is very important for of the safety, environmental protection and stability of power generation. The control system of water island is complex and isolated,so that the overall situation of water island is difficult to establish for monitoring, calculation and analysis. According to the water resources management, environmental protection and the requirement of energy saving , water saving, lean management and economic performance, an operation optimization system to monitor and optimize the operation of water Island must be created. The paper will introduce an operation optimization system of water island through the power generation big data platform. The production data of power plant production are collected and stored by using real-time and relational database such as AIRDB, MARIADB and NOSQL. Using machine learning, AI and data analysis to support remote monitoring, real-time analysis and smart alarm of water island. system. The user of water island can get Operational guidance through the system. At present, the system has been applied in a power plants and has played an important role in energy saving and operation management of power plants.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: