本文已被:浏览 928次 下载 849次
投稿时间:2018-07-20 修订日期:2018-07-24
投稿时间:2018-07-20 修订日期:2018-07-24
中文摘要: 传统的图像识别方法,不能有效检测出电力部件的具体位置,同时在干扰物较多的场景下识别准确率较低。本文针对以上问题提出一种基于MASK LSTM-CNN模型的电力部件巡检图像识别方法。结合已有的Mask R-CNN方法,利用长短期记忆神经网络,通过络融合上下文信息来构建MASK LSTM-CNN模型,然后结合电力部件的具体特征进一步利用优化算法来优化模型的参数,使设计的模型能够在干扰信息较多的现场环境下依然可以准确识别电力部件,成功解决了已有方法中存在的电力部件在被遮挡情况下识别率较低的问题,大大改善了部件识别的精度。结合实际采集的电力部件巡检图像数据集对提出的模型进行大量测试验证,实验结果表明提出的MASK LSTM-CNN模型相比于R-FCN、Faster R-CNN等模型检测效果更优,平均识别准确率提高9%-12%左右,有效解决了干扰信息较多的电力场景中的部件识别问题。
Abstract:The traditional image recognition method cannot effectively detect the specific position of the power component, and the recognition accuracy is low in the scene with many interferents. In view of the above problems,this paper proposes a method based on MASK LSTM-CNN model for power component inspection image recognition. Combining with the existing Mask R-CNN method,the MASK LSTM-CNN model is constructed by using the long-short-term memory neural network, and the context information is constructed by the fusion of the context information. Then, the optimization algorithm is used to optimize the parameters of the model by combining the specific characteristics of the power components. The model can accurately identify the power components in the field environment with more interference information, and successfully solves the problem that the power components existing in the existing methods have low recognition rate under the occlusion condition, and greatly improves the accuracy of component recognition. Combined with the actual collected power component inspection image dataset, a large number of tests are carried out on the proposed model. The experimental results show that the proposed MASK LSTM-CNN model is better than R-FCN and faster R-CNN. The recognition accuracy rate is improved by 9%-12%, which effectively solves the component identification problem in the power field with more interference information.
文章编号: 中图分类号: 文献标志码:
基金项目:基于深度学习的大客户负荷预测技术研究与应用
作者 | 单位 | |
欧家祥 | 贵州电网有限责任公司电力科学研究院 | 18817931275@163.com |
史文彬* | 贵州电网有限责任公司电力科学研究院 | 18817931275@163.com |
张俊玮 | 贵州电网有限责任公司电力科学研究院 | |
丁超 | 贵州电网有限责任公司电力科学研究院 |
引用文本: