###
DOI:
电力大数据:2019,22(01):-
←前一篇   |   后一篇→
本文二维码信息
电力大数据下的短期电力负荷预测
(呼和浩特供电局)
Short-term power load forecasting under power big data<sub>#$NL</sub><sub>Li Chong</sub><sub>chun</sub><sub> Zhu </sub><sub>Anqi</sub><sub>#$NL</sub><sub>(Hohhot Power Supply Bureau, Inner Mongolia, Hohhot 010050, China)</sub>
(Hohhot Power Supply Bureau)
摘要
图/表
参考文献
相似文献
本文已被:浏览 560次   下载 955
投稿时间:2018-06-28    修订日期:2018-09-30
中文摘要: 电力产业是国民工业系统中重要的产业。在电网运行管理中,对于负荷预测具有非常重要的作用。更加准确的电力负荷预测可以为电网的安全稳定运行、实时进行电网负荷的调度提供了重要依据。特别是在经济方面,精确的电力负荷预测可以优化发、用电电网调度计划,合理调度和分配资源,从而起到使社会效益、经济效益最大化的作用。然而随着中国经济的飞速发展,对电力的需求不断增长,电力负荷本身受诸多因素以及政策影响比如日期、天气、气候、市场等其他因素,这些因素更大大加大了准确进行电力负荷预测的困难性。一直以来,人们一直都致力于提高电力负荷预测的准确性,人工神经网络算法具有泛化、学习能力强等优点,现在该算法已在电力负荷预测领域中得到了广泛应用,并且取得了良好的效果。近年来,人工神经网络领域取得重大突破,涌现出一个新的深度学习研究领域。本文就是基于最新发展的人工神经网络算法,结合实际地区电网数据研究了短期电力负荷预测的相关问题。
中文关键词: 大数据  人工神经网络  负荷预测
Abstract:The power industry plays a pillar role in the national industrial system. The smooth operation of electricity is related to the lifeline of the national economy. In power system management, power load forecasting is crucial. Accurate power load forecasting can provide important basis for the smooth operation of the system and real-time power dispatching. Especially in the economic field, power load forecasting can play a significant role in rationally deploying resources, optimizing power generation plans, and achieving optimal social and economic benefits. However, with the rapid economic development of our country, the demand for electricity is increasing day by day, and the power load itself is also affected by the date, weather, climate, market, and policies, which greatly increases the difficulty of accurately predicting the power load. People have always been committed to improving the accuracy of power load forecasting. Artificial neural networks have the advantages of self-learning and generalization ability. They have been widely used in power load forecasting and have achieved satisfactory results. In recent years, the field of artificial neural networks has made gratifying breakthroughs, and a new research field of deep learning has emerged. This article based on the latest development of artificial neural network, combined with the actual data on the short-term powerload forecasting issues related research.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: