###
DOI:
电力大数据:2018,21(10):-
←前一篇   |   后一篇→
本文二维码信息
基于自然语言处理技术的电力客户投诉工单文本挖掘分析
吴刚勇,张千斌,吴恒超,顾冰
(国网浙江省电力公司湖州供电公司,国网浙江省电力公司湖州供电公司,国网浙江省电力公司湖州供电公司,国网浙江省电力公司湖州供电公司)
Text Mining Analysis of Power Customer Complaint Worksheet Based on Natural Language Processing Technology
wugangyong,zhangqianbin,wuhengchao and gubing
(STATE GRID ZHEJIANG HUZHOU ELECTRIC POWER SUPPLY COMPANY,STATE GRID ZHEJIANG HUZHOU ELECTRIC POWER SUPPLY COMPANY,STATE GRID ZHEJIANG HUZHOU ELECTRIC POWER SUPPLY COMPANY,STATE GRID ZHEJIANG HUZHOU ELECTRIC POWER SUPPLY COMPANY)
摘要
图/表
参考文献
相似文献
本文已被:浏览 759次   下载 948
投稿时间:2018-06-22    修订日期:2018-08-06
中文摘要: 本文主要结合浙江湖州电力业务需求,旨在打破客户对用电诉求存在的盲区,从而提高对用户用电需求的管理程度,实现热点投诉业务工单的原因挖掘。为了更好的深入挖掘投诉工单背后所蕴含的信息,研究基于自然语言处理技术出发,对电力客户投诉工单进行深入文本挖掘,利用隐马尔可夫模型等分词技术分析投诉工单中的受理内容,进行词频统计,通过TF-IDF算法计算关键词重要性权重值,提取权重值大的关键词频作为客户投诉文本挖掘的最终结果,并运用词云分析技术进行分析结果可视化展示;通过文本分类分析,构建文本分类器模型,实现对 “热点词频”在不同业务中的分布情况的研究,并根据结果开展相应改进措施。把控住当下电力客户投诉的主要问题,针对性的为不同类型的电力客户提供差异化的服务策略,从而提高客户满意度和忠诚度。专题的推广应用,能够很好的提升客服部门的工作效率,落在实处的为客户解决难题。
Abstract:This paper mainly combines the demand of Zhejiang Huzhou power business, aiming at breaking the blind spot where customers have complaints about power consumption, thereby improving the management level of users'' electricity demand and realizing the reasons mining for hot complaints business work orders. In order to better dig deeper into the information contained in the complaints worksheet, based on natural language processing technology, this paper makes a in-depth text mining of power customer complaints work orders, uses hidden Markov model and other word segmentation techniques to analyze the acceptance of complaints in the work order content, and carries out the word frequency statistics, the keyword importance weight value is calculated by TF-IDF algorithm, and the keyword frequency with large weight value is extracted as the final result of customer complaint text mining. Finally, the word cloud analysis technology is used to visualize the analysis results, Through the text classification analysis, the text classifier model is constructed to realize the research on the distribution of "hot word frequency" in different business, and the corresponding improvement measures are carried out according to the results.The main problems of current power customer complaints are controlled, and differentiated service strategies are provided for different types of power customers, thereby improving customer satisfaction and loyalty. The promotion and application of the topic can improve the work efficiency of the customer service department, and solve the problem for the customer.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: