本文已被:浏览 1318次 下载 970次
投稿时间:2018-06-19 修订日期:2018-08-03
投稿时间:2018-06-19 修订日期:2018-08-03
中文摘要: 本文旨在利用大数据技术对电力数据进行系统挖掘,提供精准负荷预测,为供电安全监视、预防性控制和紧急处理提供依据。文章结合西安地区配电网运行中存在的问题,综合分析配变重过载的外部环境、配变运行信息、配变属性信息、配变供电客户类型等因素,应用大数据机器学习算法、大数据预处理技术、数据挖掘建模技术、大数据可视化技术等,分析研究各影响因素对设备重过载影响的相关性和重要程度,使用分类预测挖掘手段及随机森林算法,分析计算影响变量和目标变量,建立关系模式挖掘模型,构建配变重过载分析及预警模型,完成模型验证与纠偏,实现配变未来一周重过载情况准确预警、配变安全系数评价、重过载配变因素及特征分析与展示等,为电网运维提供有力支撑。通过基于大数据的配变重过载预警分析,提高运维工作效率,实现电网安全可靠运行。
Abstract:The purpose of this paper is to use large data technology to mine the power data systematically, provide accurate load forecasting, and provide the basis for the safety monitoring, preventive control and emergency treatment of power supply. Based on the problems existing in the operation of distribution network in Xi''an area, this paper comprehensively analyzes the external environment of the distribution transformer overload, the distribution transformer information, the distribution transformer property information, the type of distribution transformer power supply customer and so on, and applies the big data machine learning algorithm, the big data preprocessing technology, the data mining modeling technology and the big data visualization technology. On the basis of analyzing the correlation and importance of the influence factors on the heavy overload of equipment, using the classification prediction mining method and the random forest algorithm, analyzing and calculating the influence variables and the target variables, establishing the relational model mining model, The heavy overload analysis and early warning model of power distribution transformer are constructed to complete model verification and correction, to realize accurate early warning of heavy overload in the next week, evaluation of safety coefficient of distribution transformer, factors of heavy overload distribution and variation, and feature analysis and display, and so on, which will provide a strong support for the operation and maintenance of the power grid. Through heavy data overload and early warning analysis based on big data, the efficiency of operation and maintenance will be improved, and the safe and reliable operation of power grid can be realized.
keywords: distribution transformer heavy overload large data
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
邱小耕 | 国网陕西省电力电力公司培训中心 | qiuyimiao@163.com |
张鹏 | 国网西安供电公司 | |
梁卫 | 国网西安供电公司 | |
郭军 | 国网西安供电公司 | |
白开峰 | 国网西安供电公司 | |
粱芝贤* | 国网西安供电公司 | qiuyimiao@163.com |
冯超 | 国网西安供电公司 |
引用文本: