本文已被:浏览 873次 下载 2次
投稿时间:2018-06-14 修订日期:2018-06-21
投稿时间:2018-06-14 修订日期:2018-06-21
中文摘要: 电力系统为电力用户提供可靠、优质、经济、环保电能的前提条件是能对电力负荷进行精确的预测。电网中的调度部门要根据短期负荷的预测结果来安排发电和供电计划,从而优化资源配置,提高经济效益。因此,短期负荷预测具有重大意义。为了提高负荷预测的准确性,较为全面的综述了短期负荷预测方法的研究状况。首先简述了短期负荷预测的意义、特点以及影响因素,综合叙述了短期负荷预测方法的历史发展。然后分别从数据预处理和组合预测两个方面总结了各个方法的研究现状和存在的问题。最后指出了当前短期负荷预测研究的主要问题以及下一步可能的研究方向。 得出的结论是对历史数据进行预处理后结合时下流行的机器学习算法能提高电力系统短期负荷预测的精度。
Abstract:The precondition for the power system to provide reliable, high-quality, economical, and environmentally friendly power for power users is to accurately predict the power load.The dispatching department in the power grid must arrange power generation and power supply plans based on the forecast results of short-term load, so as to optimize resource allocation and improve economic efficiency.Therefore, short-term load forecasting is of great significance. In order to improve the accuracy of load forecasting,the research status on short-term load forecasting method is reviewed comprehensively. Firstly the significance, characteristics and factors affecting the precision of short-term load forecasting are briefly introduced, and the historical development of short-term load forecasting method is comprehensively described. Then the present research situation and problems of various forecasting methods based on data preprocessing and combination prediction are summarized respectively. Finally, the existing problems of the current short-term load forecasting and the probable development trend in the future are pointed out. The conclusion is that after preprocessing historical data, combined with the popular machine learning algorithm, the accuracy of short-term load forecasting can be improved.
keywords: short-term load forecasting data preprocessing combinatorial model signal decomposition machine learning.
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
徐轶丹* | 贵州大学电气工程学院 | 262487374@qq.com |
Author Name | Affiliation | |
XU Yidan | College of Electrical Engineering,Guizhou University | 262487374@qq.com |
引用文本: