###
DOI:
电力大数据:2018,21(7):-
←前一篇   |   后一篇→
本文二维码信息
电力系统短期负荷预测方法研究综述
夏博,杨超,李冲
(贵州大学,贵州大学,贵州大学)
Review of the short-term load forecasting methods of electric power system
xiabo,yangchao and lichong
(GuiZhou University,GuiZhou University,GuiZhou University)
摘要
图/表
参考文献
相似文献
本文已被:浏览 702次   下载 895
投稿时间:2018-05-15    修订日期:2018-05-15
中文摘要: 根据负荷预测基本流程,分别对数据预处理、模型选取、模型优化分别进行了总结分析。首先对传统的数据处理方法进行了概述,并简要介绍了新的数据处理方法。其次,将现有的短期负荷预测方法分为经典方法、传统方法和智能方法,综合分析了现有预测方法的应用原理,详细分析和比较预测方法的优点和不足之处,为了提高预测的精度,一些新的方法就因运而生,目的在于提高预测精度和适应相应各种运行条件。再次,总结分析了传统的预测优化模型,并简要介绍了现有的一些新的优化模型,这些新的优化模型计算结果相比于传统的模型精确度较高,分析了新优化模型的优点和不足之处。文章最后对了未来电力系统负荷预测提出了展望,在进行短期负荷预测时应该考虑电力市场、新能源、电动汽车相关因素的影响。
Abstract:According to the basic process of load forecasting, data preprocessing, model selection and model optimization were separately analyzed. First, it summarizes the traditional data processing methods and briefly introduces new data processing methods. Secondly, the existing short-term load forecasting methods are divided into classical methods, traditional methods and intelligent methods. The application principles of existing forecasting methods are comprehensively analyzed, and the advantages and disadvantages of the forecasting methods are analyzed and compared in detail to improve the accuracy of forecasting. Some new methods have emerged as a result of the move, with the aim of improving prediction accuracy and adapting to a variety of operating conditions. Thirdly, the traditional predictive optimization models are summarized and analyzed, and some existing new optimization models are briefly introduced. The results of these new optimization models are higher than the traditional models, and the advantages of the new optimization model are analyzed. Inadequacies. In the end, the article puts forward the prospect of power system load forecasting in the future. In the short-term load forecasting, it should consider the impact of power market, new energy, and electric vehicle related factors.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: