###
DOI:
电力大数据:2018,21(5):-
←前一篇   |   后一篇→
本文二维码信息
基于差分进化的改进细菌觅食算法在智能配电网故障定位方法中的应用
徐玉韬,谈竹奎,吕黔苏,谢百明,班国邦,袁旭峰,陈玉峰,吴恒
(贵州电网有限责任公司电力科学研究院,贵州电网有限责任公司电力科学研究院,贵州电网有限责任公司电力科学研究院,贵州电网有限责任公司电力科学研究院,贵州电网有限责任公司电力科学研究院,贵州电网有限责任公司电力科学研究院,北京四方继保自动化股份有限公司,北京四方继保自动化股份有限公司)
Application of Improved Bacteria Feeding Algorithm Based on Differential Evolution in Fault Location of Active Distribution Network
Xu Yutao,Tan zhukui,LV Qiansu,Xie Baiming,Xie Baiming,Yuan Xufeng,Chen Yufeng and Wu Heng
(Electric Power Research Institute of Guizhou Power Grid Co. Ltd,Electric Power Research Institute of Guizhou Power Grid Co. Ltd,Electric Power Research Institute of Guizhou Power Grid Co. Ltd,Electric Power Research Institute of Guizhou Power Grid Co. Ltd,Electric Power Research Institute of Guizhou Power Grid Co. Ltd,Electric Power Research Institute of Guizhou Power Grid Co. Ltd,Beijing Sifang Automation Co.,Ltd,Beijing Sifang Automation Co.,Ltd)
摘要
图/表
参考文献
相似文献
本文已被:浏览 864次   下载 993
投稿时间:2018-04-18    修订日期:2018-04-25
中文摘要: 为了解决含分布式电源的配电网的故障定位问题,提出一种基于差分进化的改进细菌觅食算法进行配电网故障定位,首先针对分布式电源投切问题,构建能够动态适应多个分布式电源投切的开关函数,然后结合区域划分思想,通过将各个配网支路分为有源树和无源树进行故障信息筛选,降低解空间,提高故障定位的速度;同时针对细菌觅食算法精度不高和全局搜索能力较差的问题,借鉴差分进化中的变异和交叉机制,通过多样性控制与交叉操作协调来实现细菌觅食算法在细化搜索与扩展新区之间的协调,提高算法的寻优精度和全局寻优能力,适用于复杂的含分布式电源的配电网络。通过算例对该故障定位方法进行仿真,结果表明该算法能准确定位,并具有一定的有效性和容错性。
Abstract:In order to solve the problem of the fault location of distribution network with distributed power supply, an improved bacterial foraging algorithm based on differential evolution is proposed. Firstly, the switching function which can dynamically adapt to multiple distributed power supply switching is constructed for distributed power supply and cutting problem. Then, combining the idea of regional division, the fault information is selected by dividing the branches of each distribution network into active tree and passive tree to reduce the solution space and improve the speed of fault location, Also, considering the problem of low precision and poor global search capability for bacterial foraging algorithms, the variation and crossover mechanisms of differential evolution is used, Through the coordination of diversity control and cross operation, the bacterial foraging algorithm can be used to improve the coordination between the refined search and the extended new district , and improve the optimization precision and global optimization ability of the algorithm, which is suitable for the complex distribution network containing distributed power. Finally, The fault location method is simulated by a numerical example, and the results show that the algorithm can be accurately positioned and has certain validity and fault tolerance.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
引用文本: