###
DOI:
电力大数据:2018,21(4):-
←前一篇   |   后一篇→
本文二维码信息
基于IGG抗差最小二乘法的三相配电网谐波状态估计
印然
(贵州大学电气工程学院)
Harmonic state estimation of three phase distribution network based on IGG differential least square method
yinran
(College of electrical engineering, Guizhou University)
摘要
图/表
参考文献
相似文献
本文已被:浏览 662次   下载 892
投稿时间:2018-03-30    修订日期:2018-04-02
中文摘要: 针对传统最小二乘法在谐波状态估计量测数据中混有粗差时的处理能力不足,提出了一种基于IGG法的抗差最小二乘法。抗差估计是统计学里面常用的一种针对数据中含有粗差的处理方法,而抗差最小二乘法就是将抗差估计和最小二乘法相结合的一种新的估计方法。该方法对量测数据进行降权、保权和淘汰,改善量测数据的权重,从而抵御了粗差对估计结果带来的恶劣影响。同时,目前大多数的配电网谐波状态估计模型采用简化的单相模型,并未考虑配电网三相不平衡的特点,本文建立了配电网的三相数学模型,并采用IEEE33节点系统进行仿真分析,在量测数据中混有粗差时分别运用抗差最小二乘法和传统最小二乘法求解并对估计结果进行误差对比,算例结果表明了抗差最小二乘法具有较强的抗差能力且估计精度优于传统最小二乘法。
Abstract:In order to solve the problem that the traditional least square method is not able to deal with the coarse difference in the measured data of harmonic state estimation, a method based on IGG method is proposed. Resistance Estimationis one of the commonly used statistical inside for gross error is contained in the data processing method, and poor resistance to the least square method is combining Estimation and least squares method a new method of Estimation. This method can reduce the weight of the measured data, improve the weight of the measured data, and thus resist the bad influence of the coarse difference on the estimation result. At the same time, most current distribution network using a simplified model of single-phase harmonic state estimation model, does not take into account the characteristics of the three-phase unbalanced distribution network, this paper established the mathematical model of three-phase power distribution network, and USES the IEEE33 node system analysis, simulation mixed with gross error in the measured data respectively using poor resistance to the least square method and the traditional least squares solution and the error estimation results of numerical example results show that the resistance is poor least-square method has stronger ability to resist bad and estimation precision is superior to the traditional least square method
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: